A developed multibody knee model for unloading knee with cartilage penetration depth control

Author:

Javanfar Amirhosein1,Bamdad Mahdi12ORCID

Affiliation:

1. Corrective Exercise and Rehabilitation Laboratory, School of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahrood, Iran

2. Department of Health Science and Technology, Aalborg University, Aalborg, Denmark

Abstract

Unloader knee braces could relieve pain by decreasing the medial knee loading. Particularly for knee osteoarthritis (KOA) patients, this study investigates the relevance of the knee model after identifying the most influential parameter. Since KOA causes the cartilage in a joint to lose its elasticity and thickness, the lack of normal bone-to-bone separation can be painful. We believe that cartilage penetration depth control is an impactful strategy in this research. Moreover, the knee contact force in KOA is fewer than in healthy knees, confirming that the contact force control cannot be a straight factor. Therefore, a biomechanical human knee model is developed, and a generic procedure for dynamic analysis of contact problems in combination with the musculoskeletal model is introduced. The developed model includes the geometric expression of collision curves and an algorithm for determining collision points. This presentation addresses cartilage penetration depth and contact force calculation through nonlinear discontinuous contact law. In view of this, femur and tibia’s relative motion is analyzed through the combined collision reactions of cartilage and bone in the knee. In the simulation, maximum penetration depth in a healthy knee is reported to be 0.795 mm, while in a 75% KOA is 0.521 mm, including 0.5 mm cartilage-cartilage contact and 0.021 mm bone-bone contact. The top unloading 852 N is achieved, reducing penetration depth to 0.45 mm, avoiding bone-bone contact. This proposed procedure with low computation gives us a suitable analysis method for designing knee assistive devices.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Reference46 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3