Effects of Intracortical Porosity on Fracture Toughness in Aging Human Bone: A μCT-Based Cohesive Finite Element Study

Author:

Ural Ani1,Vashishth Deepak1

Affiliation:

1. Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180

Abstract

The extent to which increased intracortical porosity affects the fracture properties of aging and osteoporotic bone is unknown. Here, we report the development and application of a microcomputed tomography based finite element approach that allows determining the effects of intracortical porosity on bone fracture by blocking all other age-related changes in bone. Previously tested compact tension specimens from human tibiae were scanned using microcomputed tomography and converted to finite element meshes containing three-dimensional cohesive finite elements in the direction of the crack growth. Simulations were run incorporating age-related increase in intracortical porosity but keeping cohesive parameters representing other age-related effects constant. Additional simulations were performed with reduced cohesive parameters. The results showed a 6% decrease in initiation toughness and a 62% decrease in propagation toughness with a 4% increase in porosity. The reduction in toughnesses became even more pronounced when other age-related effects in addition to porosity were introduced. The initiation and propagation toughness decreased by 51% and 83%, respectively, with the combined effect of 4% increase in porosity and decrease in the cohesive properties reflecting other age-related changes in bone. These results show that intracortical porosity is a significant contributor to the fracture toughness of the cortical bone and that the combination of computational modeling with advanced imaging improves the prediction of the fracture properties of the aged and the osteoporotic cortical bone.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3