MR-based techniques for intracortical vessel visualization and characterization: understanding the impact of microvascular disease on skeletal health

Author:

Löffler Maximilian T.123,Wu Po-Hung1,Kazakia Galateia J.1

Affiliation:

1. Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107, USA

2. Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Freiburg im Breisgau

3. Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany

Abstract

Purpose of review The relationships between bone vasculature and bone microstructure and strength remain incompletely understood. Addressing this gap will require in vivo imaging capabilities. We describe the relevant vascular anatomy of compact bone, review current magnetic resonance imaging (MRI)-based techniques that allow in vivo assessment of intracortical vasculature, and finally present preliminary studies that apply these techniques to investigate changes in intracortical vessels in aging and disease. Recent findings Ultra-short echo time MRI (UTE MRI), dynamic contrast-enhanced MRI (DCE-MRI), and susceptibility-weighted MRI techniques are able to probe intracortical vasculature. Applied to patients with type 2 diabetes, DCE-MRI was able to find significantly larger intracortical vessels compared to nondiabetic controls. Using the same technique, a significantly larger number of smaller vessels was observed in patients with microvascular disease compared to those without. Preliminary data on perfusion MRI showed decreased cortical perfusion with age. Summary Development of in vivo techniques for intracortical vessel visualization and characterization will enable the exploration of interactions between the vascular and skeletal systems, and further our understanding of drivers of cortical pore expansion. As we investigate potential pathways of cortical pore expansion, appropriate treatment and prevention strategies will be clarified.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Nutrition and Dietetics,Endocrinology,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3