Thermo-Economic Analysis of an Intercooled, Reheat and Recuperated Gas Turbine for Cogeneration Applications–Part I: Base Load Operation

Author:

Bhargava R.1,Bianchi M.2,Negri di Montenegro G.2,Peretto A.2

Affiliation:

1. Universal Ensco, Inc. 1811 Bering Drive Houston, TX 77057

2. DIEM–University of Bologna, Viale Risorgimento, 2, Bologna 40136, Italy

Abstract

This paper presents a thermo-economic analysis of an intercooled, reheat (ICRH) gas turbine, with and without recuperation, for cogeneration applications. The optimization analyses of thermodynamic parameters have permitted to calculate variables, such as low-pressure compressor pressure ratio, high-pressure turbine pressure ratio and gas temperature at the waste heat recovery unit inlet while maximizing electric efficiency and “Energy Saving Index.” Subsequently, the economic analyses have allowed to evaluate return on the investment, and the minimum value of gross payout period, for the cycle configurations of highest thermodynamic performance. In the present study three sizes (100 MW, 20 MW, and 5 MW) of gas turbines have been examined. The performed investigation reveals that the maximum value of electric efficiency and “Energy Saving Index” is achieved for a large size (100 MW) recuperated ICRH gas turbine based cogeneration system. However, a nonrecuperated ICRH gas turbine (of 100 MW) based cogeneration system provides maximum value of return on the investment and the minimum value of gross payout period compared to the other gas turbine cycles, of the same size and with same power to heat ratio, investigated in the present study. A comprehensive thermo-economic analysis methodology, presented in this paper, should provide useful guidelines for preliminary sizing and selection of gas turbine cycle for cogeneration applications.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3