The Transport of Vortices Through a Turbine Cascade

Author:

van de Wall A. G.1,Kadambi J. R.1,Boyle R. J.2,Adamczyk J. J.2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106

2. NASA Lewis Research Center, Cleveland, OH 44135

Abstract

An experiment was conducted to determine how incident vortices created by upstream blade rows interacted with a downstream turbine cascade. Specifically, the kinematics of the vortex transport through turbine blade passages was investigated. A stationary water table and a flow visualization system using the pH indicator Bromothymol Blue was used to visualize the vortices generated by vortex generators placed upstream of a turbine blade cascade. Two test series were conducted. In the first test series, stationary vortex generators were positioned at various locations along the turbine blade pitch to observe how a steady incident streamwise vortex was transported through the turbine cascade. Observations showed an unsteady vortex response of the streamwise vortex when the incident vortex was located at the stagnation area of the blade. In the second test series, the vortex generators were moved to simulate the relative motion of an upstream blade row. In these tests, the unsteady vortex response was no longer seen at the stagnation region but was instead located at the suction side of the blade. In addition, the breakdown of the vortex varied greatly with the reduced frequency of the incident vorticity and showed an “explosive” type vortex breakdown that occurred at reduced frequencies greater than 8. The dissimilar behavior between the stationary and moving incident vortices indicates that losses and leading edge heat transfer could differ to some degree when determined from a stationary test as opposed to a full-stage simulation.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis and Prediction of Shock-Induced Vortex Circulation in Transonic Compressors;Journal of Turbomachinery;2015-10-06

2. Particle Image Velocimetry Analysis on the Effect of Stator Loading on Transonic Blade-Row Interactions;Journal of Turbomachinery;2012-09-04

3. Time-Accurate CFD Analysis on the Effects of Upstream Stator Loading and Blade Row Interactions on Stator Suction Side Boundary Layer Behavior;49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition;2011-01-04

4. Streamwise Vorticity, Laminar Separation and Transition in Flows over Turbomachinery Blades;49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition;2011-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3