Particle Image Velocimetry Analysis on the Effect of Stator Loading on Transonic Blade-Row Interactions

Author:

Reynolds Scott B.1,Gorrell Steven E.1,Estevadeordal Jordi2

Affiliation:

1. Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602

2. Innovative Scientific Solutions, Inc. Dayton, OH 45440

Abstract

Experiments were performed to investigate interactions between a loaded stator and transonic rotor. The blade row interaction (BRI) rig was used to simulate an embedded transonic fan stage with realistic geometry (thin trailing edge), which produces a wake through diffusion. Details of the unsteady flow field between the stator and rotor were obtained using PIV. Flow-visualization images and PIV data that facilitate analysis of vortex shedding, wake motion, and wake-shock-interaction phenomena are presented. Stator wake and rotor-bow-shock interactions were analyzed for three stator/rotor axial spacings and two stator loadings. Specific shed vortices and wake topological features were isolated for each configuration. The data analysis focuses on measuring the vortex size, strength, and location as it forms on the stator trailing edge and propagates downstream into the rotor passage. It was observed that vortex shedding is synchronized to the passing of a rotor bow shock. Results show that the circulation of a vortex increased by 19% to 23% from far to close spacing due to the increased strength of the rotor bow shock impacting the stator trailing edge. Reduction in stator loading decreased shed vortex circulation for the same stator/rotor axial spacing by 20% to 25%. Pitchwise radius of vortices also decreased by 13% to 19% from far to close spacing. Such changes in vortex size and strength should be accounted for to predict the effect of unsteady blade-row interactions on transonic compressor performance.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3