Investigations on the Discharge and Total Temperature Increase Characteristics of the Labyrinth Seals With Honeycomb and Smooth Lands

Author:

Yan Xin1,Li Jun1,Song Liming1,Feng Zhenping1

Affiliation:

1. Institute of Turbomachinery, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China

Abstract

Abstract The viscous work generated by the rotating components of a seal not only represents a direct loss of power but also causes an increase in the total temperature of fluid (windage effect). In order to study the discharge and total temperature increase characteristics of the stepped labyrinth seals with smooth and honeycomb lands, 3D Reynolds-averaged Navier–Stokes solutions from CFX is used in this work. At first, the influences of the inlet preswirl, leakage flow rate, and rotational speed on the total temperature increase in the convergent and divergent stepped labyrinth seals with smooth and honeycomb lands are conducted. The obtained 3D numerical results are well in agreement with the referenced experimental data. It shows that the utilized numerical approach has sufficient precision to predict the total temperature increase in seals. Then, a range of pressure ratios and four sizes of sealing clearance are performed to investigate the effects of sealing clearances and pressure ratio impact on the discharge and total temperature increase of the stepped labyrinth seals with honeycomb and smooth liners.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3