Dimensional Analysis and Scaling of Rotating Seals

Author:

Denecke J.1,Fa¨rber J.1,Dullenkopf K.1,Bauer H.-J.1

Affiliation:

1. Universitaet Karlsruhe (TH), Karlsruhe, Germany

Abstract

To characterize contactless seals in turbo machinery, their discharge behavior, the development of the circumferential velocity (swirl) and the loss induced total temperature increase (windage heating) are of special interest for the designer. For the discharge behavior of non-rotating labyrinth seals, a well established set of non-dimensional numbers already exists: the discharge coefficient of two seals with different sizes but similar geometry is identical, if pressure ratio, axial Reynolds number, fluid properties and turbulence level are also identical. In this paper, the set of non-dimensional numbers is extended to cover swirl and windage heating using the well established Buckingham-π theorem to derive possible candidates. First, as a proof of concept, the known set of numbers for the non-rotating case was redeveloped and subsequently the influence of rotation was included. To validate the candidates, a comprehensive numerical parametric study was conducted. A variety of convergent and divergent stepped labyrinth seals was scaled from laboratory to typical engine conditions such that the dimensionless numbers stayed constant. Then, simulations at different rotational speeds, radii, and inlet circumferential velocities were performed to investigate the effects of rotation while maintaining nearly constant discharge behavior. The numerical data were used to validate the new non-dimensional numbers and to derive laws for the scaling of labyrinth seals. The non-dimensional numbers can also be applied to other seal types, such as brush or finger seals, because their theoretical deduction does not imply a specific geometry.

Publisher

ASMEDC

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3