Influence of Low Ambient Temperatures on the Exhaust Gas and Deposit Composition of Gasoline Engines

Author:

Appel Dominik1,Hagen Fabian P.2,Wagner Uwe1,Koch Thomas1,Bockhorn Henning2,Trimis Dimosthenis2

Affiliation:

1. Karlsruhe Institute of Technology (KIT), Institute of Internal Combustion Engines, Karlsruhe 76131, Germany

2. Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institute, Chair of Combustion Technology, Karlsruhe 76131, Germany

Abstract

Abstract To comply with future emission regulations for internal combustion engines, system-related cold start conditions in short-distance traffic constitute a particular challenge. Under these conditions, pollutant emissions are seriously increased due to internal engine effects and unfavorable operating conditions of the exhaust aftertreatment systems. As a secondary effect, the composition of the exhaust gases has a considerable influence on the deposition of aerosols via different deposition mechanisms and on fouling processes of exhaust gas-carrying components. Also, the performance of exhaust gas aftertreatment systems may be affected disadvantageously. In this study, the exhaust gas and deposit composition of a turbocharged three-cylinder gasoline engine are examined in situ upstream of the catalytic converter at ambient and engine starting temperatures of −22 °C to 23 °C using a Fourier-transform infrared spectrometer and a particle spectrometer. For the cold start investigation, a modern gasoline engine with series engine periphery is used. In particular, the investigation of the behavior of deposits in the exhaust system of gasoline engines during cold start under dynamic driving conditions represents an extraordinary challenge due to an average lower soot concentration in the exhaust gas compared to diesel engines and so far has not been examined in this form. A novel sampling method allows ex situ analysis of formed deposits during a single driving cycle. Both, particle number concentration and the deposition rate are higher in the testing procedure of real driving emissions (RDEs) than in the inner city part of the worldwide harmonized light vehicles test cycle (WLTC). In addition, reduced ambient temperatures increase the amount of deposits, which consist predominantly of soot and to a minor fraction of volatile compounds. Although the primary particle size distributions of the deposited soot particles do not change when boundary conditions change, the degree of graphitization within the particles increases with the increasing exhaust gas temperature.

Funder

Forschungsvereinigung Verbrennungskraftmaschinen

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference24 articles.

1. Particulate Fouling of Corrugated Plate Heat Exchangers. Global Kinetic and Equilibrium Studies;Grandgeorge;Chem. Eng. Sci.,1998

2. Boulter, P. G. , 1997, “Environmental Traffic Management: A Review of Factors Affecting Cold Start Emissions,” England, Transport Research Laboratory TRL Report 270.

3. Commission Regulation (EU) for the Purpose of Improving the Emission Type Approval Tests and Procedures for Light Passenger and Commercial Vehicles, Including Those for in-Service Conformity and Real-Driving Emissions and Introducing Devices for Monitoring the Consumption of Fuel and Electric Energy;European Commission;Off. J. Eur. Union,2018

4. Combustion

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3