Film Cooling Performance on a Turbine Blade with Subregional Compound Angle

Author:

Li Guoqing1,Li Ang2,Shen Zhang2,Wang Chenfeng3,Lu Xingen1

Affiliation:

1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China; School of Aeronautics and Astronautics, University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Science and Technology on Advanced Light-Duty Gas-Turbine, Beijing 100190, China

2. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China; School of Aeronautics and Astronautics, University of Chinese Academy of Sciences, Beijing 100049, China

3. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China; Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China

Abstract

Abstract Under the function of passage secondary flow, film cooling deviates from the streamwise on turbine blade which directly, not what we want, results in uneven film coverage. On pressure side, film appears divergent while it is bunched on suction side. To solve this problem, Subregional compound angle is proposed. Based on the experimental result, the design scheme of multiple working cases and compound angles is implemented. Results show that five regions along the spanwise could be divided on pressure side. Under the effect of horseshoe vortex, the film deviation in the root region is the most serious. When the compound angle increases to -30°, this phenomenon can be effectively weakened, and the deviation angle decreases along the streamwise as the horseshoe vortex gradually moves away from the blade surface. Different from pressure side, two subdivisions are added along the streamwise on suction side because, besides the horseshoe vortex, the effects of passage vortex grow up. In addition, the film deviation of the root region is more obvious than that of pressure side. The entrainment of stronger passage vortex makes the film improvement from increasing compound angle more difficult downstream of the suction side. Overall, compound angle can weaken the Counter Rotating Vortex Pair and improve the averaged film cooling effectiveness.

Publisher

ASME International

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3