Mechanistic Insights into Effects of Perforation Direction on Thermal Hydraulic Performance of Ribs in a Rectangular Cooling Channel

Author:

Qian Weijia1,Shuai Ruiyang1,Meng Qingkun2ORCID,Roy Subhajit1,Yao Songbai3,Wang Ping1ORCID

Affiliation:

1. Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China

2. The System Design Institute of Mechanical-Electrical Engineering, Beijing 100854, China

3. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

Abstract

This study investigates the turbulent flow characteristics and heat transfer performance within a rectangular cooling channel with an aspect ratio of 5:3 and featuring perforated ribs, then explores the effects of the rib perforation directions on its thermal hydraulic performance. Through experimental tests (transient thermographic liquid crystal technique) and numerical simulations, it is demonstrated that horizontal perforated ribs can effectively reduce pressure loss at a high Reynolds number while maintaining notable heat transfer enhancement. Additionally, changing the rib perforation directions results in diverse effects on flow field and heat transfer. Our results show that horizontal perforated ribs can compress the recirculation vortex behind ribs, enhancing heat transfer by flow scouring, whereas upward-tilted perforated ribs increase flow friction and weaken heat transfer due to coupling of the airflow with the separation vortices behind the ribs. Downward-tilted ribs enhance local heat transfer by directing airflow behind the rib, and can also cause detachment of vortices and reduced friction. Our results indicate that introducing horizontal perforated ribs into a rectangular internal cooling channel can decrease pressure loss without significantly compromising heat transfer performance.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3