Performance of Aluminum and Carbon Foams for Air Side Heat Transfer Augmentation

Author:

Garrity Patrick T.1,Klausner James F.1,Mei Renwei1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611

Abstract

The air side heat transfer performance of three aluminum foam samples and three modified carbon foam samples are examined for comparison with multilouvered fins often found in compact heat exchangers. The aluminum foam samples have a bulk density of 216 kg/m3 with pore sizes of 0.5, 1, and 2 mm. The modified carbon foam samples have bulk densities of 284, 317, and 400 kg/m3 and machined flow passages of 3.2 mm in diameter. The samples were placed in a forced convection arrangement using a foil heater as the heat source and ambient air as the sink. A constant heat flux of 9.77 kW/m2 is applied throughout the experiments with the mean air velocity ranging from 1 to 6 m/s as the control parameter. The steady volume-averaged momentum equation and a two-equation nonequilibrium heat transfer model are employed to extract the volumetric heat transfer coefficients. Pressure drop measurements are correlated with the Darcy–Forcheimer relation. Empirical heat transfer correlations for the aluminum and carbon foam samples are provided. Using a hypothetical heat exchanger considering only the thermal resistance between the ambient air and the outer tube wall, the air side performance for each sample is modeled based on the local heat transfer coefficients and friction factors obtained from experiments. The performance of each sample is evaluated based on a coefficient of performance (COP, defined as the ratio of the total heat removed to the electrical input of the blower), compactness factor (CF, defined as the total heat removed per unit volume), and power density (PD, defined as the total heat removed per unit mass). Results show the carbon foam samples provide significant improvement in CF but the COP and PD are considerably lower than that for comparable multilouvered fin heat exchangers.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference15 articles.

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3