Computational Modelling of Heat Transfer through Aluminium Metal Foams for LiFePO4 Battery Cooling

Author:

P S Arjun1ORCID,Perumal D. Arumuga1ORCID

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal-575025, Karnataka, India

Abstract

Abstract: Temperature is crucial for battery pack durability and power. Folded fin and serpentine channel cooling methods are mostly used to cool the pack. However, fluid absorption during cooling can reduce capacity and cause downstream temperatures to be higher than upstream. Consistent cooling is vital to prevent temperature variation and increase battery pack lifespan. This work is concerned with the computational study of heat dissipation from open-cell aluminium metal foam for cooling LiFePO4 battery packs. The battery module consists of six pieces of pouch cell and three pieces of the aluminium foam heat sink. In the present study, aluminium foams are positioned between the LiFePO4 battery modules that are arranged in a vertical manner. Thermal interaction between the battery module and aluminum foam was studied. The effect of pore density on heat dissipation performance at different mass flow rates was explored. It has been discovered that aluminium foam with suitable porosity and pore density can efficiently cool the LiFePO4 battery pack. This paper provides a theoretical framework for designing a thermal management system for lithium- ion batteries using aluminium foam. Background: Metal foam cooling is an established technique for thermal management of Lithiumion batteries in electric vehicles. Objective:: The present study aims to analyze heat transfer through aluminium metal foams for vertically aligned LiFePO4 battery pack cooling. Methods: The Darcy extended Forchheimer (DEF) model examines fluid flow through metallic foams, using the local thermal non-equilibrium model to determine heat transfer. Results: The impact of the density of pores in the aluminium foam on the average wall temperature and temperature difference along the battery surface is determined. The variation of heat transfer of lithium-ion battery modules for different mass flow rates is also studied. Conclusion: The results indicate that utilizing aluminium foam as a heat transfer medium for battery modules significantly enhances their thermal management performance.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3