A SOFC-Based Integrated Gasification Fuel Cell Cycle With CO2 Capture

Author:

Spallina Vincenzo1,Romano Matteo C.1,Campanari Stefano1,Lozza Giovanni1

Affiliation:

1. Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy

Abstract

The application of solid oxide fuel cells (SOFC) in gasification-based power plants would represent a turning point in the power generation sector, allowing to considerably increase the electric efficiency of coal-fired power stations. Pollutant emissions would also be significantly reduced in integrated gasification fuel cell cycles (IGFC) considering the much lower emissions of conventional pollutants (NOx, CO, SOx, and particulate matter) typical of fuel cell-based systems. In addition, SOFC-based IGFCs appear particularly suited to applications in power plants with CO2 capture. This is evident by considering that SOFCs operate as air separators and partly oxidized fuel exiting the fuel cell does not contain nitrogen from air, such as in conventional oxyfuel processes. The aim of this paper is the thermodynamic analysis of a SOFC-based IGFC with CO2 capture. In the assessed plant, syngas produced in a high efficiency Shell gasifier is used in SOFC modules after heat recovery and cleaning. Anode exhausts, still containing combustible species, are burned with oxygen produced in the air separation unit, also used to generate the oxygen needed in the gasifier; the product gas is cooled down in a heat recovery steam generator before water condensation and CO2 compression. The plant layout is carefully designed to best exploit the heat generated in all the processes and, apart from the fuel cell exotic components, far from industrial state-of-the-art, are not included. Detailed energy and mass balances are presented for a better comprehension of the obtained results.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3