Comparative Evaluation of SOFC/Gas Turbine Hybrid System Options

Author:

Litzinger Kevin P.1,Veyo Stephen E.1,Shockling Larry A.1,Lundberg Wayne L.1

Affiliation:

1. Siemens Westinghouse Power Corporation, Pittsburgh, PA

Abstract

Solid Oxide Fuel Cell [SOFC]/Gas Turbine [GT] hybrid power systems can synergistically exploit the high operating temperature and high electrical generation efficiency of the solid oxide fuel cell and the high power density and simplicity of the gas turbine engine generator. Continued studies at Siemens Westinghouse seek practical system configurations with commercialization potential. Pressurized SOFC [PSOFC]/GT system concepts [directly heated Brayton cycles] can yield electrical power generation at the highest efficiency [circa 70%] {net ac/LHV} with concomitant complexity in configuration, operation and installation. Indirectly heated Brayton cycles utilizing an atmospheric pressure SOFC [ASOFC] can achieve a more modest electrical power generation efficiency [circa 55%] with considerably less complexity. Co-firing of the GT combustor to yield state-of-the-art [SOA] turbine inlet temperature [TIT] can most fully exploit the capability of SOA turbine technology yielding a hybrid system of lesser efficiency, but also of lesser cost ($/kWe). The ideal gas turbine and/or system configuration remains elusive however. Recent studies have focused on the indirectly heated cycle wherein the gas turbine exhaust serves directly as the SOFC oxidant. Consequently, the GT exhaust flow rate and temperature must be compatible with SOFC generator inlet requirements. This compatibility can be difficult to achieve with a state-of-the-art micro gas turbine generator [MTG] that typically operates with relatively low pressure ratio [3 to 4]. Alternatives ranging from the ideal GT to system level feature additions allowing SOA GTs have been analyzed. These alternatives are identified and discussed, and results of a comparative performance and cost evaluation are reviewed.

Publisher

ASMEDC

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3