Controllability Over Wall Thickness of Tubular Structures and Encapsulation During Co-Axial Extrusion of a Thermal-Crosslinking Hydrogel

Author:

Yu Ilhan1,Grindrod Samantha2,Chen Roland1

Affiliation:

1. School of Mechanical and Materials Engineering, Washington State University, PO Box 642920, Pullman, WA 99164-2920

2. Voiland School of Chemical Engineering and Bioengineering, Washington State University, PO Box 646515, Pullman, WA 99164-2920

Abstract

Abstract Tubular structures of the hydrogel are used in a variety of applications such as delivering nutrient supplies for 3D cell culturing. The wall thickness of the tube determines the delivery rate. In this study, we used the coaxial extrusion process to fabricate tubular structures with varying wall thicknesses using a thermal-crosslinking hydrogel, gellan gum (GG). The objectives of this study are to investigate the thermal extrusion process of GG to form tubular structures, the range of achievable wall thickness, and a possibility to form tubular structures with closed ends to encapsulate fluid or drug inside the tube. The wall thickness is controlled by changing the relative flow velocity of the inner needle (phosphate-buffered saline, PBS) to the outer needle, while keeping the velocity of outer needles (GG) constant. Two pairs of coaxial needles were used which are 18-12 gauge (G) and 20-12G. The controllable wall thickness ranges from 0.618 mm (100% relative velocity) to 0.499 mm (250%) for 18-12G and from 0.77 mm (80%) to 0.69 (200%) for 20-12G. Encapsulation is possible in a smaller range of flow velocities in both needle combinations. A finite element model was developed to estimate the temperature distribution and the wall thickness. The model is found to be accurate. The dynamic viscosity of GG determines the pressure equilibrium and the range of achievable wall thickness. Changing the inner needle size or the flow velocity both affect the heat exchange and thus the temperature-dependent dynamic viscosity.

Funder

National Science Foundation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3