An Experimental and Numerical Study on Coaxial Extrusion of a Non-Newtonian Hydrogel Material

Author:

Yu Ilhan1,Chen Roland1

Affiliation:

1. School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, WA 99164-2920

Abstract

Abstract Coaxial extrusion is a commonly used process to manufacture tubular structures to mimic vascular systems in 3D bioprinting. In this study, the stability of coaxial extrusion of a non-Newtonian material, Pluronic F127, is investigated. The extrusion process is considered stable when the extrudate form a core-annular structure. When it is unstable, dripping or jetting of the inner fluid is observed. In this study, the effects of the viscosity ratio, flowrate ratio, and the non-Newtonian behaviors on the stability of the coaxial extrusion process are investigated experimentally and numerically. The results show that all three factors can affect the stability of the process. When the ratio of viscosities increases, the process becomes unstable. The extrusion process tends to be stable when the flowrate of the outer fluid is much higher than that of the inner fluid. When the overall flowrate decreases, due to the non-Newtonian fluid behavior, the extrusion process can become unstable. This study shows the interconnected relationship between viscosity, flowrate, and non-Newtonian fluid behaviors and their effects on the stability of the coaxial extrusion process. The non-Newtonian flow behavior needs to be considered when studying or using coaxial extrusion. This study also provides a guiding principle on how to alter extrusion parameters in order to achieve the desired flow pattern.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3