Affiliation:
1. KSB AG, 67225 Frankenthal, Germany
2. Arizona State University, Environmental Fluid Dynamics Program, Department of Mechanical and Aerospace Engineering, Tempe, AZ 85287-6106
Abstract
The results of an experimental study of the flow field resulting from the interaction between an impinging jet and a rotating disk are presented. The resulting flow configuration has applications in turbomachinery, for example, to intensify the local heat transfer at turbine disks. The experiments cover separate measurements of the disk-wall flow, the jet flow and interaction between the two. The flow patterns are investigated over a range of jet Reynolds numbers Rejet = 0.66-104 - 6.80-104 (based on jet diameter) and disk Reynolds numbers Redisk 3.4·105 − 6.2· 105 (based on impingement radius), achieved by varying the jet nozzle diameter, jet flow rate, rotational disk speed and the impingement radius. The measurements included the depth of jet penetration into the wall boundary layer, the travel distance of the jet against the direction of disk rotation, and the turbulent and mean velocity distribution. Another objective of this study concerns the type of flow at the impingement region (jet dominated flow or rotation dominated flow) and the conditions for the transition from one to the other. In the first part of the study, the flow structure of the jet and disk flows as well as the three-dimensional flow fields resulting from the interaction are presented.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献