Numerical Study of Turbulent Axisymmetric Jets Impinging on a Flat Plate and Flowing Into an Axisymmetric Cavity

Author:

Amano R. S.1,Brandt H.2

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin—Milwaukee, Milwaukee, Wis. 53201

2. Department of Mechanical Engineering, University of California at Davis, Davis, Calif. 95616

Abstract

A numerical study is made of the characteristics of turbulent submerged axisymmetric incompressible jets impinging on a flat plate and flowing into an axisymmetric cavity. The purpose of the study is to obtain a better understanding of the behavior of a fluid jet used to cut solid materials. In the computations a hybrid finite difference method is used to solve the full Navier-Stokes equations for an incompressible submerged jet with the k ∼ ε turbulence model. All computed results are compared with experimental data reported in the literature. For the case of the jet impinging on a flat plate, the computations are made for nozzle-to-plate distances ranging from 2 to 40 nozzle diameters. For the jet flowing into an axisymmetric cavity, computations are made for cavity depths ranging from 0 to 60 nozzle diameters. The use of the k ∼ ε turbulence model results in good predictions of the velocity, pressure, and skin friction distributions. The near-wall models for the kinetic energy and turbulent shear stress give good predictions of the skin friction coefficients.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3