Design of Three-Dimensional, Triply Periodic Unit Cell Scaffold Structures for Additive Manufacturing

Author:

Mohammed Mazher Iqbal1,Gibson Ian2

Affiliation:

1. School of Engineering, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong 3216, VIC, Australia e-mail:

2. School of Engineering, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong 3216, VIC, Australia

Abstract

Highly organized, porous architectures leverage the true potential of additive manufacturing (AM) as they can simply not be manufactured by any other means. However, their mainstream usage is being hindered by the traditional methodologies of design which are heavily mathematically orientated and do not allow ease of controlling geometrical attributes. In this study, we aim to address these limitations through a more design-driven approach and demonstrate how complex mathematical surfaces, such as triply periodic structures, can be used to generate unit cells and be applied to design scaffold structures in both regular and irregular volumes in addition to hybrid formats. We examine the conversion of several triply periodic mathematical surfaces into unit cell structures and use these to design scaffolds, which are subsequently manufactured using fused filament fabrication (FFF) additive manufacturing. We present techniques to convert these functions from a two-dimensional surface to three-dimensional (3D) unit cell, fine tune the porosity and surface area, and examine the nuances behind conversion into a scaffold structure suitable for 3D printing. It was found that there are constraints in the final size of unit cell that can be suitably translated through a wider structure while still allowing for repeatable printing, which ultimately restricts the attainable porosities and smallest printed feature size. We found this limit to be approximately three times the stated precision of the 3D printer used this study. Ultimately, this work provides guidance to designers/engineers creating porous structures, and findings could be useful in applications such as tissue engineering and product light-weighting.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3