Effect of process parameters on the morphological and mechanical properties of 3D Bioextruded poly(ε‐caprolactone) scaffolds

Author:

Domingos M.,Chiellini F.,Gloria A.,Ambrosio L.,Bartolo P.,Chiellini E.

Abstract

PurposeThis paper aims to report a detailed study regarding the influence of process parameters on the morphological/mechanical properties of poly(ε‐caprolactone) (PCL) scaffolds manufactured by using a novel extrusion‐based system that is called BioExtruder.Design/methodology/approachIn this study the authors focused investigations on four parameters, namely the liquefier temperature (LT), screw rotation velocity (SRV), deposition velocity (DV) and slice thickness (ST). Scaffolds were fabricated by employing three different values of each parameter. Through a series of trials, scaffolds were manufactured varying iteratively one parameter while maintaining constant the other ones. The morphology of the structures was investigated using a scanning electron microscope (SEM), whilst the mechanical performance was assessed though compression tests.FindingsExperimental results highlight a direct influence of the process parameters on the PCL scaffolds properties. In particular, DV and SRV have the highest influence in terms of road width (RW) and consequently on the porosity and mechanical behaviour of the structures.Research limitations/implicationsThe effect of process and design parameters on the biological response of scaffolds is currently under investigation.Originality/valueThe output of this work provides a major insight into the effect of process parameters on the morphological/mechanical properties of PCL scaffolds. Moreover, the potential and feasibility of this novel extrusion‐based system open a new opportunity to study how structural features may influence the characteristics and performances of the scaffolds, enabling the development of integrated biomechanical models that can be used in CAD systems to manufacture customized structures for tissue regeneration.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3