Instability and Transition in a Separation Bubble Under a Three-Dimensional Freestream Pressure Distribution

Author:

Yaras M. I.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada

Abstract

This paper presents measurements of the instability and transition processes in separation bubbles under a three-dimensional freestream pressure distribution. The measurements are performed on a flat plate on which a pressure distribution is imposed by a contoured surface facing the flat test-surface. The three-dimensional pressure distribution that is established on the test-surface approximates the pressure distributions encountered on swept blades. This type of pressure field produces crossflows in the laminar boundary layer upstream of the separation and within the separation bubble. The effects of these crossflows on the instability of the upstream boundary layer and on the instability, transition onset, and transition rate within the separated shear-layer are examined. The measurements are performed at two flow-Reynolds numbers and relatively low level of freestream turbulence. The results of this experimental study show that the three-dimensional freestream pressure field and the corresponding redistribution of the freestream flow can cause significant spanwise variation in the separation-bubble structure. It is demonstrated that the instability and transition processes in the modified separation bubble develop on the basis of the same fundamentals as in two-dimensional separation bubbles and can be predicted with the same level of accuracy using models that have been developed for two-dimensional separation bubbles.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3