Effects of Free-Stream Turbulence and Adverse Pressure Gradients on Boundary Layer Transition

Author:

Gostelow J. P.1,Blunden A. R.1,Walker G. J.2

Affiliation:

1. University of Technology, Sydney, Sydney, Australia

2. University of Tasmania, Hobart, Tasmania, Australia

Abstract

Boundary layer measurements are presented through transition for six different free-stream turbulence levels and a complete range of adverse pressure gradients for attached laminar flow. Measured intermittency distributions provide an excellent similarity basis for characterizing the transition process under all conditions tested when the Narasimha procedure for determining transition inception is used. This inception location procedure brings consistency to the data. Velocity profiles and integral parameters are influenced by turbulence level and pressure gradient and do not provide a consistent basis. Under strong adverse pressure gradients transition occurs rapidly and the velocity profile has not fully responded before the completion of transition. The starting turbulent layer does not attain an equilibrium velocity profile. A change in pressure gradient from zero to even a modest adverse level is accompanied by a severe reduction in transition length. Under diffusing conditions the physics of the transition process changes and the spot formation rate increases rapidly; instead of the “breakdown in sets” regime experienced in the absence of a pressure gradient, transition under strong adverse pressure gradients is more related to the amplification and subsequent instability of the Tollmien-Schlichting waves. Measurements reveal an exponential decrease in transition length with increasing adverse pressure gradient; a less severe exponential decrease is experienced with increasing turbulence level. Correlations of transition length are provided that facilitate its prediction in the form of suitable length parameters including spot formation rate.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3