Experimental Investigation of Non-Condensable Gases Effect on Novovoronezh NPP-2 Steam Generator Condensation Power Under the Condition of Passive Safety Systems Operation

Author:

Kopytov I. I.1,Kalyakin S. G.2,Berkovich V. M.1,Morozov A. V.2,Remizov O. V.2

Affiliation:

1. Atomenergoproekt, Moscow, Russia

2. SSC RF - Institute for Physics and Power Engineering named after A. I. Leypunsky, Obninsk, Russia

Abstract

The design substantiation of the heat removal efficiency from Novovoronezh NPP-2 (NPP-2006 project with VVER-1200 reactor) reactor core in the event of primary circuit leaks and operation of passive safety systems only (among these are the systems of hydroaccumulators of the 1st and 2nd stages and passive heat removal system) has been performed based on computational simulation of the related processes in the reactor and containment. The computational simulation has been performed with regard to the detrimental effect of non-condensable gases on steam generator (SG) condensation power. Nitrogen arriving at the circuit with the actuation of hydroaccumulators of the 1st stage and products of water radiolysis are the main sources of non-condensable gases in the primary circuit. The feature of Novovoronezh NPP-2 passive safety systems operation is that during the course of emptying of the 2nd stage hydroaccumulators system (HA-2) the gas-steam mixture spontaneously flows out from SG cold headers into the volume of HA-2 tanks. The flow rate of gas-steam mixture during the operation of HA-2 system is equal to the volumetric water discharge from hydroaccumulators. The calculations carried out by different integral thermal hydraulic codes revealed that this volume flow rate of gas-steam mixture from SG to the HA-2 system would suffice to eliminate the “poisoning” of SG piping and to maintain necessary condensation power. In support of the calculation results, the experiments were carried out at the HA2M-SG test facility constructed at IPPE. The test facility incorporates a VVER steam generator model of volumetric-power scale of 1:46. Steam to the HA2M-SG test facility is supplied fed from the IPPE heat power plant. Gas addition to steam coming to the SG model is added from high pressure gas cylinders. Nitrogen and helium are used in the experiments for simulating hydrogen. The report presents the basic results of experimental investigations aimed at the evaluation of SG condensation power under the inflow of gas-steam mix with different gases concentration to the tube bundle, both under the simulation of gas-steam mixture outflow from SG cold header to the HA-2 system and without outflow. As a result of the research performed at the HA2M-SG test facility, it has been substantiated experimentally that in the event of an emergency leak steam generators have condensation power sufficient for effective heat removal from the reactor provided by PHR system.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3