Estimation influence of boric acid drop entrainment to its accumulation in the VVER reactor in the case of accident

Author:

Morozov Andrej V.,Pityk Anna V.,Ragulin Sergej V.,Sahipgareev Azamat R.,Soshkina Aleksandra S.,Shlyopkin Aleksandr S.

Abstract

Process of boric acid mass transfer during accidents accompanied with rupture of circulation pipelines in VVER reactors of new generation equipped with passive safety systems are examined. Results of calculation of variation of boric acid concentration in VVER-TOI reactor in case of accident development process are presented. Positive effects of boric acid droplet entrainment on the processes of acid accumulation and crystallization in the reactor core are demonstrated. The obtained results allow formulating the conclusion on the possibility of these processes in the reactor core which may lead to the disruption of heat removal from fuel pins. Review of available published reference data on physical properties of boric acid solutions (density, viscosity, thermal conductivity) is given. It is established that available information is of too general nature and fails to cover the whole range of parameters (acid temperature, pressure and concentration) typical for potential emergency situation on NPP equipped with VVER reactor. Necessity of experimental study of processes of droplet entrainment under parameters typical for VVER emergency operation conditions, as well as investigation of thermal physics properties of boric acid within wide range of acid concentration values is required.

Publisher

Pensoft Publishers

Subject

General Medicine

Reference17 articles.

1. Thermal properties of boric acid aqueous solutions at 298–573 K.;Azizov;Teplofizika vysokih temperature,1996

2. Investigation of the thermal conductivity of electrolytes and porous materials saturated by a fluid aqueous solutions.;Gusejnov;Fizika, Baki, Elm,2007

3. Justification of HA- 2 passive reflooding systems design functions of advanced project NPP with VVER. Izvestiya vuzov.;Kalyakin;Yadernaya Energetika,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3