Affiliation:
1. Institut für Thermische Strömungsmaschinen, University of Karlsruhe, 76128 Karlsruhe, Germany
2. MTU Aero-Engines GmbH, Dachauer Strasse 665, 80995 München, Germany
Abstract
Increasing the efficiency of modern jet engines does not only imply to the mainstream but also to the secondary air and oil system. Within the oil system the bearing chamber is one of the most challenging components. Oil films on the chamber walls are generated from oil droplets, ligaments, or film fragments, which emerge from bearings, seal plates and shafts, and enter the bearing chamber with an angular momentum. Furthermore, shear forces at its surface, gravity forces, and the design of scavenge and vent ports strongly impact the behavior of the liquid film. The present paper focuses on the experimental determination of the film thickness in various geometries of bearing chambers for a wide range of engine relevant conditions. Therefore, each configuration was equipped with five capacitive probes positioned at different circumferential locations. Two analytical approaches are used for a comprehensive discussion of the complex film flow.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献