ASSESSMENT OF MULTIFLUID, EULERIAN INTEGRAL THIN FILM AND DPM APPROACHES FOR THE NUMERICAL SIMULATION OF A BEARING CHAMBER

Author:

Kirov Nikolay K.,Zuzio Davide,Senoner Jean-Mathieu,Laurent Claire,Picard Mathieu,Estivalezes Jean-Luc

Abstract

In this work several computational approaches are tested for the two-phase simulation of the ELUBSYS bearing chamber in the high-speed regime-a four-equation Eulerian multifluid model, a steady-state Eulerian integral thin film (EITF) approach, a discrete parcel method (DPM) approach, and a simplified EITF-DPM coupled approach. While computationally expensive, the multifluid model captured the global liquid dynamics in the chamber and predicted that most of the oil is in the form of a thin film that flows on the stationary walls. The much more cost-efficient EITF approach achieved accurate results for the oil thickness distribution at the counter-current region but did not account for the large amounts of oil flowing out through the top vent. The DPM approach was used to assess the dispersed phase dynamics in both one-way and two-way coupling configurations, outlining a significant influence of the latter on the gas phase dynamics. Finally, the coupled EITFDPM approach was able to overcome some of the limitations observed by its individual counterparts by predicting a continuous film throughout the chamber circumference and a higher vent outflow, while still retaining most of the expected film distribution characteristics in the bearing chamber.

Publisher

Begell House

Subject

General Engineering,Condensed Matter Physics,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3