Thin Film Phonon Heat Conduction by the Dispersion Lattice Boltzmann Method

Author:

Escobar Rodrigo A.1,Amon Cristina H.23

Affiliation:

1. Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul Santiago, Chile

2. ASME Life Fellow

3. Mechanical Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

Numerical simulations of time-dependent thermal energy transport in semiconductor thin films are performed using the lattice Boltzmann method applied to phonon transport. The discrete lattice Boltzmann Method is derived from the continuous Boltzmann transport equation assuming nonlinear, frequency-dependent phonon dispersion for acoustic and optical phonons. Results indicate that the heat conduction in silicon thin films displays a transition from diffusive to ballistic energy transport as the characteristic length of the system becomes comparable to the phonon mean free path and that the thermal energy transport process is characterized by the propagation of multiple superimposed phonon waves. The methodology is used to characterize the time-dependent temperature profiles inside films of decreasing thickness. Thickness-dependent thermal conductivity values are computed based on steady-state temperature distributions obtained from the numerical models. It is found that reducing feature size into the subcontinuum regime decreases thermal conductivity when compared to bulk values, at a higher rate than what was displayed by the Debye-based gray lattice Boltzmann method.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference30 articles.

1. Heat Transfer Regimes in Microstructures;Flik;ASME J. Heat Transfer

2. Microscale Heat Conduction in Dielectric Thin Films;Majumdar;ASME J. Heat Transfer

3. International Technology Roadmap for Semiconductors, ITRS 20053 update (http://public.itrs.net/).

4. Zhang, W., and Fisher, T. S., 2002, “Application of the Lattice-Boltzmann Method to Sub-Continuum Heat Conduction,” ASME Paper No. IMECE2002-32122.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3