Simulating Melt Pool Shape and Lack of Fusion Porosity for Selective Laser Melting of Cobalt Chromium Components

Author:

Teng Chong1,Gong Haijun2,Szabo Attila3,Dilip J. J. S.4,Ashby Katy5,Zhang Shanshan4,Patil Nachiket6,Pal Deepankar78,Stucker Brent5

Affiliation:

1. 3DSIM, LLC, Park City, UT 84098 e-mail:

2. Visiting Assistant Professor, Georgia Southern University, Statesboro, GA 30460

3. GE Power & Water, Greenville, SC 29615

4. University of Louisville, Louisville, KY 40292

5. 3DSIM, LLC, Park City, UT 84098

6. 3DSIM, LLC, Park City, UT 84098,

7. 3DSIM, LLC, Park City, UT 84098;

8. University of Louisville, Louisville, KY 40292,

Abstract

Cobalt chromium is widely used to make medical implants and wind turbine, engine and aircraft components because of its high wear and corrosion resistance. The ability to process geometrically complex components is an area of intense interest to enable shifting from traditional manufacturing techniques to additive manufacturing (AM). The major reason for using AM is to ease design modification and optimization since AM machines can directly apply the changes from an updated STL file to print a geometrically complex object. Quality assurance for AM fabricated parts is recognized as a critical limitation of AM processes. In selective laser melting (SLM), layer by layer melting and remelting can lead to porosity defects caused by lack of fusion, balling, and keyhole collapse. Machine process parameter optimization becomes a very important task and is usually accomplished by producing a large amount of experimental coupons with different combinations of process parameters such as laser power, speed, hatch spacing, and powder layer thickness. In order to save the cost and time of these experimental trial and error methods, many researchers have attempted to simulate defect formation in SLM. Many physics-based assumptions must be made to model these processes, and thus, all the models are limited in some aspects. In the present work, we investigated single bead melt pool shapes for SLM of CoCr to tune the physics assumptions and then, applied to the model to predict bulk lack of fusion porosity within the finished parts. The simulation results were compared and validated against experimental results and show a high degree of correlation.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3