Deep learning-based image segmentation for defect detection in additive manufacturing: an overview

Author:

Deshpande Sourabh,Venugopal Vysakh,Kumar Manish,Anand Sam

Abstract

AbstractAdditive manufacturing (AM) applications are rapidly expanding across multiple domains and are not limited to prototyping purposes. However, achieving flawless parts in medical, aerospace, and automotive applications is critical for the widespread adoption of AM in these industries. Since AM is a complex process consisting of multiple interdependent factors, deep learning (DL) approaches are adopted widely to correlate the AM process physics to the part quality. Typically, in AM processes, computer vision-based DL is performed by extracting the machine’s sensor data and layer-wise images through camera-based systems. This paper presents an overview of computer vision-assisted patch-wise defect localization and pixel-wise segmentation methods reported for AM processes to achieve error-free parts. In particular, these deep learning methods localize and segment defects in each layer, such as porosity, melt-pool regions, and spattering, during in situ processes. Further, knowledge of these defects can provide an in-depth understanding of fine-tuning optimal process parameters and part quality through real-time feedback. In addition to DL architectures to identify defects, we report on applications of DL extended to adjust the AM process variables in closed-loop feedback systems. Although several studies have investigated deploying closed-loop systems in AM for defect mitigation, specific challenges exist due to the relationship between inter-dependent process parameters and hardware constraints. We discuss potential opportunities to mitigate these challenges, including advanced segmentation algorithms, vision transformers, data diversity for improved performance, and predictive feedback approaches.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3