Real-Time Combustion Phase Detection Using Central Normalized Difference Pressure in CRDI Diesel Engines

Author:

Lim Jongsuk1,Oh Seungsuk1,Chung Jeasung1,Sunwoo Myoungho1

Affiliation:

1. Department of Automotive Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea

Abstract

To develop eco-friendly diesel engines, accurate combustion phase control is important due to its significant effects on harmful emissions and fuel efficiency. In order to accurately control the combustion phase, the detection of the combustion phase should precede control system design. Currently, combustion phase detection is done by the location of 50% mass fraction burned (MFB50), because of its close correlation with emissions and fuel efficiency. However, this method is not easily implemented in real-time applications because the calculation of MFB50 requires a large amount of in-cylinder pressure data and an excessive computational load. For this reason, a combustion phase indicator with a simple algorithm is required for real-time combustion control. In this study, we propose a new combustion phase indicator, called the “Central normalized difference pressures (CNDP).” The CNDP indicates the center of the two crank angles where the normalized difference pressure between firing pressure and motoring pressure (NDP) reaches 90% of the maximum value before peak (NDPbp90), and 70% of the maximum value after peak (NDPap70). The NDPbp90 and NDPap70 are highly correlated with MFB50 and the correlation is enhanced as the center between the two points obtained. The CNDP is represented by a fixed quadratic polynomial with MFB50 that robust to changes in various engine operating conditions such as engine speed, main injection timing, injected fuel quantity, fuel-rail pressure, exhaust gas recirculation (EGR) rate and boost pressure. Furthermore, in performance evaluation, the CNDP requires remarkably fewer in-cylinder pressure data samples, calculation steps and less computation time compared to MFB50. These results show great potential for the CNDP to be a substitute for the MFB50 since the proposed combustion phase detection algorithm can be used effectively for real-time combustion phase detection and control.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3