On the Numerical Behavior of RANS-Based Transition Models

Author:

Lopes Rui1,Eça Luís1,Vaz Guilherme2

Affiliation:

1. Instituto Superior Técnico, Avenue Rovisco Pais 1, Lisbon 1049-001, Portugal

2. Maritime Research Institute Netherlands, 2 Haagsteeg, Wageningen 6708 PM, The Netherlands; WavEC—Offshore Renewables, Rua Dom Jerónimo Osório, 11, 1°, Lisbon 1400-119, Portugal

Abstract

Abstract A comparison of several Reynolds-averaged Navier–Stokes (RANS) based transition models is presented. Four of the most widespread models are selected: the γ−Reθ, γ, amplification factor transport (AFT), and kT−kL−ω models, representative of different modeling approaches. The calculations are performed on several geometries: a flat plate, the Eppler 387 and NACA 0012 two-dimensional (2D) airfoils at two angles of attack, and the SD7003 wing. Distinct features such as the influence of the inlet boundary conditions, discretization error, and modeling error are discussed. It is found that all models present a strong sensitivity to the turbulence quantities inlet boundary conditions, and with the exception of the AFT model, are severely influenced by the decay of turbulence predicted by the underlying turbulence model. This makes the estimation of modeling errors troublesome because these quantities are rarely reported in experiments. Despite not having specific terms in their formulation to deal with separation-induced transition, both the AFT and kT−kL−ω models manage to predict it for the Eppler 387 foil, although presenting higher numerical uncertainty than the remaining models. However, both models show difficulties in the simulation of flows at Reynolds numbers under 105. The γ−Reθ and γ models are the most robust alternatives in terms of iterative and discretization error. The use of RANS compatible transition models allows for laminar flow and features such as laminar separation bubbles to be reproduced and can lead to greatly improved numerical solutions when compared to simulations performed with standard turbulence models.

Publisher

ASME International

Subject

Mechanical Engineering

Reference47 articles.

1. Standard Test Cases for Transition Model Verification and Validation in Computational Fluid Dynamics,2018

2. On the Use of the γ-R̃eθt Transition Model for the Prediction of the Propeller Performance at Model-Scale;Ocean Eng.,2018

3. Laminar-Turbulent Flow Simulation for Wind Turbine Profiles Using the γ−Reθt–Transition Model;Wind Energy,2014

4. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences,2014

5. A Selective Review of Transition Modelling for CFD,2009

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3