Near Field Evolution of Blade Wakes Under the Influence of Upstream Transitional Flow in a Compressor Cascade at Moderate Reynolds Numbers

Author:

Shi Lei12,Ma Hongwei3,Wang Tianyou4

Affiliation:

1. State Key Laboratory of Engines, Tianjin University , Tianjin 300072, China ; , Beijing 100191, China

2. School of Energy and Power Engineering, Beihang University , Tianjin 300072, China ; , Beijing 100191, China

3. School of Energy and Power Engineering, Beihang University , Beijing 100191, China

4. State Key Laboratory of Engines, Tianjin University , Tianjin 300072, China

Abstract

Abstract The variation of blade wake characteristics under the influence of upstream transitional flow has not been thoroughly studied, since few control volumes in experimental investigations capture both the blade surface transitional flow and the downstream wake. In this study, instantaneous flow fields in the near-blade and the near-wake region of a compressor cascade at various incidences (i = 0 deg, 2.5 deg, 5 deg, 7.5 deg, and 10 deg) were investigated using particle image velocimetry (PIV). The mean and fluctuating near-wake fields of the compressor blade at Rec = 24,000 were analyzed considering the upstream blade surface laminar separation bubble (LSB) types. The suction-side flow topology shifts at a critical incidence angle of 5 deg from laminar separation without reattachment (i < 5 deg) into a LSB near the trailing edge (i = 5 deg) and an LSB which is advancing to the leading edge (i > 5 deg). The laminar separation vortices retain sufficient strength and coherence to interact with the wake at the low incidence angles (LIA cases, i ≤ 5 deg) but lose coherence beyond the reattachment point at the high incidence angles (HIA cases, i > 5 deg). Self-similarity of the asymmetrical wakes under the influence of various LSB types was established. Near field evolution of wake width, wake decay rate, and flow fluctuations are directly correlated with the LSB type. An optimal incidence exists for the minimum overall flow fluctuation with a delayed separation and alleviated vortical interactions when the LSB locates at the trailing edge.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3