Dynamic Analysis of Planar Mechanisms With Fuzzy Joint Clearance and Random Geometry

Author:

Sun Dongyang1,Shi Yan2,Zhang Baoqiang3

Affiliation:

1. College of Aerospace Engineering, Chongqing University, Chongqing 400044, China e-mail:

2. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China e-mail:

3. School of Aerospace Engineering, Xiamen University, Xiamen 361005, China e-mail:

Abstract

The dynamic characteristics of planar mechanisms with fuzzy joint clearance and random geometry are studied in this paper. The dynamics model for the mechanism is constructed by utilizing Baumgarte approach in which the clearance size is a fuzzy number, while the geometry parameters are assumed as random variables. A hybrid contact force model, which consists of the Lankarani–Nikravesh model, improved Winkler elastic foundation model and modified Coulomb friction force model, is applied to construct revolute clearance joint. In order to solve the dynamics model, two methodologies are developed: confidence region method for quantification of random and fuzzy uncertainties (CRMQRFU) and confidence region method with transformation method (CRMTM). In the CRMQRFU, fuzzy numbers are first decomposed into intervals under the given membership level. Then, a general framework is proposed for quantification of random and interval uncertainties in the mechanism. In the CRMTM, a transformation method is applied to transform intervals into deterministic arrays, while probability theory is used to obtain the confidence regions under the given fuzzy values. The confidence region, considering random and fuzzy uncertainties, is obtained by fuzzy set theory. Finally, two examples are used to demonstrate the validity and feasibility of these methods.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3