Loading History Effects on the Creep and Relaxation Behavior of Thermoplastics

Author:

Khan Fazeel1

Affiliation:

1. Department of Mechanical and Manufacturing Engineering, 145 Kreger Hall, Miami University, Oxford, OH 45056

Abstract

Experimental investigations have been performed to understand the effects of prior loading on the creep and stress relaxation behavior of an amorphous polymer (polyphenylene oxide) and a semi-crystalline polymer (high density polyethylene) at room temperature. Of particular interest was the positioning of creep and relaxation tests on the unloading segment of stress-strain curves for tensile and compressive loading. The data was found to be quite unlike that obtained in typical tests performed on the loading segment; i.e., with no unloading history. Specifically, in relaxation tests, rather than registering a monotonic drop, the stress first increases then decreases. The rate of change of stress, therefore, is initially positive and then becomes negative. Similarly, in creep tests, the strain was found to decrease at first, and then began to increase. This has been labeled as rate-reversal in the context of relaxation and creep test data, and, furthermore, the test point has been found to influence the stress-time and strain-time data, respectively. In relaxation, for instance, at large strain values, the initial increase in stress is considerably smaller than the subsequent drop and the rate reversal occurs very rapidly. Conversely, at smaller strain values, the initial increase in stress dominates and the rate reversal may occur only after several hours. Analogous changes are observed during creep as tests are performed at lower stress values. Preliminary attempts at modeling the aforementioned creep and relaxation behavior have been made by modifying the existing formulation of the viscoplasticity theory based on overstress, which is a constitutive state-variable based model. A modified, single-element standard linear solid serves as a suitable descriptor of the model. Linking of two elements in series has shown some promise towards the modeling of the rate-reversal behavior. Experimental data and results of preliminary simulations are presented in this study.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3