Characterization of loading, relaxation, and recovery behaviors of high‐density polyethylene using a three‐branch spring‐dashpot model

Author:

Shi Furui1ORCID,Jar P.‐Y. Ben1ORCID

Affiliation:

1. Department of Mechanical Engineering University of Alberta, 10‐203 Donadeo Innovation Centre for Engineering Edmonton Alberta Canada

Abstract

AbstractThis paper presents an analysis of the stress evolution of high‐density polyethylene (HDPE) at loading, relaxation, and recovery stages in a multi‐relaxation‐recovery (RR) test. The analysis is based on a three‐branch spring‐dashpot model that uses the Eyring's law to govern the viscous behavior. The spring‐dashpot model comprises two viscous branches to represent the short‐ and long‐term time‐dependent stress responses to deformation, and a quasi‐static branch to represent the time‐independent stress response. A fast numerical analysis framework based on genetic algorithms was developed to determine values for the model parameters so that the difference between the simulation and the experimental data could be less than 0.08 MPa. Using this approach, values of the model parameters were determined as functions of deformation and time so that the model can simulate the stress response at loading, relaxation, and recovery stages of the RR test. The simulation also generated 10 sets of model parameter values to examine their consistency. The study concludes that the three‐branch model can serve as a suitable tool for analyzing the mechanical properties of HDPE, and values for the model parameters can potentially be used to characterize the difference among PEs for their mechanical performance.Highlights Developed computer programs to determine parameter values automatically. Explained the unusual stress drop during stress recovery after unloading. Evaluated the statistical range of the parameter values for the good fitting.

Funder

Natural Sciences and Engineering Research Council of Canada

China Scholarship Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3