A Constitutive Model for Strain-Induced Crystallization in Poly(ethylene terephthalate) (PET) during Finite Strain Load-Hold Simulations

Author:

Dupaix Rebecca B.1,Krishnan Dwarak1

Affiliation:

1. Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210, USA

Abstract

Recently, a hyperelastic-viscoplastic constitutive model was developed for PET and the noncrystallizing copolymer PETG (R. B. Dupaix, Ph.D. thesis, MIT, 2003). The materials were found to behave very similarly under monotonic loading conditions and the single constitutive model was able to capture both materials’ behavior. However, differences were observed upon unloading, and it is expected that additional differences would be observed under more complex loading conditions. Here their behavior is investigated under nonmonotonic loading conditions, specifically under load-hold conditions. The model of Dupaix and Boyce (R. B. Dupaix, Ph.D. thesis, MIT, 2003) is modified to include Ahzi’s upper-bound model for strain-induced crystallization [Ahzi et al., Mech. Mater., 35(12), pp. 1139–1148 (2003)]. The crystallization model is adapted to include criteria for the onset of strain-induced crystallization which depend on strain rate and level of deformation. The strain-rate condition prevents crystallization from beginning prior to the deformation process slowing significantly. The level-of-deformation condition delays crystallization until the material has deformed beyond a critical level. The combined model demonstrates differences in behavior between PET and PETG during complex loading situations, indicating its ability to capture the fundamental criteria for the onset of strain-induced crystallization.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3