Turbine Blade Platform Film Cooling With Simulated Swirl Purge Flow and Slashface Leakage Conditions

Author:

Chen Andrew F1,Shiau Chao-Cheng1,Han Je-Chin2

Affiliation:

1. Turbine Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123 e-mail:

2. Fellow ASME Turbine Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123 e-mail:

Abstract

The combined effects of inlet purge flow and the slashface leakage flow on the film cooling effectiveness of a turbine blade platform were studied using the pressure-sensitive paint (PSP) technique. Detailed film cooling effectiveness distributions on the endwall were obtained and analyzed. Discrete cylindrical film cooling holes were arranged to achieve an improved coverage on the endwall. Backward injection was attempted by placing backward injection holes near the pressure side leading edge portion. Experiments were done in a five-blade linear cascade with an average turbulence intensity of 10.5%. The inlet and exit Mach numbers were 0.26 and 0.43, respectively. The inlet and exit mainstream Reynolds numbers based on the axial chord length of the blade were 475,000 and 720,000, respectively. The coolant-to-mainstream mass flow ratios (MFR) were varied from 0.5% and 0.75% to 1% for the purge flow. For the endwall film cooling holes and slashface leakage flow, blowing ratios (M) of 0.5, 1.0, and 1.5 were examined. Coolant-to-mainstream density ratios (DR) that range from 1.0 (close to low temperature experiments) to 1.5 and 2.0 (close to engine conditions) were also examined. The results provide the gas turbine engine designers a better insight into improved film cooling hole configurations as well as various parametric effects on endwall film cooling when the inlet (swirl) purge flow and slashface leakage flow were incorporated.

Publisher

ASME International

Subject

Mechanical Engineering

Reference37 articles.

1. Film Cooling,1971

2. Gas Turbine Film Cooling;J. Propul. Power,2006

3. Fundamental Gas Turbine Heat Transfer;ASME J. Therm. Sci. Eng. Appl.,2013

4. Crossflows in a Turbine Cascade Passage;ASME J. Eng. Power,1980

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3