Experimental Study on the Endwall Aerothermal Performance of Turbine Cascades in a Novel Transient Test Facility

Author:

Bai Bo1,Hao Mingyang1,Li Yuanyuan2,Li Zhigang1,Li Jun1,Mao Shuo3,Ng Wing F.3

Affiliation:

1. Xi’an Jiaotong University Institute of Turbomachinery, School of Energy & Power Engineering, , Xi’an 710049 , China

2. Xi'an Thermal Power Research Institute , Xi’an 710054 , China

3. Virginia Tech Department of Mechanical Engineering, , Blacksburg, VA 24060

Abstract

Abstract Linear turbine cascades have been widely used to conduct fundamental and applied investigations, but only a few transient test facilities with the linear turbine cascade are available in the open literature. A novel transient test facility was presented in this paper, including detailed design and structure, and various experimental measurements (aerodynamic and thermodynamic) were conducted to verify the transient test facility’s capability. This test facility mainly includes a main air supply line (bypass line and test line), a coolant supply line, a test section, and a control system (heater and various valves). The linear cascade holds up six equally spaced cascade profiles, forming five completed cascade passages, and the center passage is used for aerodynamic and thermodynamic measurements. The aerodynamic loss and heat transfer performance were measured at various flow conditions (incidence angle, Ma, and blowing ratio (BR)). The endwall heat transfer coefficient and film cooling effectiveness were estimated by adopting a dual linear regression technique. Results indicate that the mianstream pressure and temperature present a desired step change, and remain relatively steady in the test window. The magnitudes of endwall heat transfer significantly increase as the Maex increases from 0.2 to 0.5, but the thermal load distributions remain the same. The BR is a key parameter for endwall film cooling performance, and the optimal film cooling coverage is acquired at the critical value of BR. Both insufficient and excessive coolant flowrate can result in undesirable endwall film cooling coverage, and may cause unnecessary consumption of the coolant flow.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3