Energy Consumption and Drying Time Optimization of Convective Drying for Performance Improvement: Response Surface Methodology and Lattice Boltzmann Method

Author:

Majdi H.1,Esfahani J. A.1

Affiliation:

1. Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111, Iran e-mail:

Abstract

In this paper, an optimization procedure is presented by response surface method to optimize the temperature and velocity of drying air and thickness of the moist object inside the dryer. The optimization procedure is performed to determine the minimum drying time and energy consumption as responses. A two-dimensional (2D) numerical solution is accomplished to analyze coupled heat and mass transfer occurring during drying of an apple slice. The air flow and the moist object are solved conjugate, while the heat and mass transfer equations are solved coupled together using lattice Boltzmann method (LBM). Beside this, a sensitivity analysis is executed to calculate the sensitivity of the responses (drying time and energy consumption) to the control factors. Results reveal that the real optimized parameters for the minimum drying time and energy consumption are temperature (T = 80 °C), velocity (V = 0.10404 m/s), and thickness ratio (TR = 0.1). The results of numerical solution are compared to the experimental results, presenting a reasonable agreement. This analysis could be useful in food drying.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3