Comparison of Filter Smoke Number and Elemental Carbon Mass From Partially Premixed Low Temperature Combustion in a Direct-Injection Diesel Engine

Author:

Northrop William F.1,Bohac Stanislav V.1,Chin Jo-Yu2,Assanis Dennis N.1

Affiliation:

1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109

2. Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109

Abstract

Partially premixed low temperature combustion (LTC) is an established advanced engine strategy that enables the simultaneous reduction of soot and NOx emissions in diesel engines. Measuring extremely low levels of soot emissions achievable with LTC modes using a filter smoke meter requires large sample volumes and repeated measurements to achieve the desired data precision and accuracy. Even taking such measures, doubt exists as to whether filter smoke number (FSN) accurately represents the actual smoke emissions emitted from such low soot conditions. The use of alternative fuels such as biodiesel also compounds efforts to accurately report soot emissions since the reflectivity of high levels of organic matter found on the particulate matter collected may result in erroneous readings from the optical detector. Using FSN, it is desired to report mass emissions of soot using empirical correlations derived for use with petroleum diesel fuels and conventional modes of combustion. The work presented in this paper compares the experimental results of well known formulas for calculating the mass of soot using FSN and the elemental carbon mass using thermal optical analysis (TOA) over a range of operating conditions and fuels from a four-cylinder direct-injection passenger car diesel engine. The data show that the mass of soot emitted by the engine can be accurately predicted with the smoke meter method utilizing a 3000 ml sample volume over a range of FSN from 0.02 to 1.5. Soot mass exhaust concentration calculated from FSN using the best of the literature expressions and that from TOA taken over all conditions correlated linearly with a slope of 0.99 and R2 value of 0.94. A primary implication of the work is that the level of confidence in reporting the soot mass based on FSN for low soot formation regimes such as LTC is improved for both petroleum diesel and biodiesel fuels.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3