Methodology of diesel particulate filter testing on test bed for non-road engine application

Author:

Sala RafałORCID,Kołek Kamil,Konior Witold

Abstract

This paper describes the methodology and test results of diesel particulate filter (DPF) functional testing performed on non-road compression ignition engine installed on test bed. The scope of work included testing of various DPF regeneration strategies, backpressure and balance point tests and emission performance evaluation during a legislative test cycles. The aim of this study was to observe and investigate the influence of exhaust gas parameters on DPF functionality in terms of soot loading, type and duration of the regeneration and emission performance. Under investigation was also the capability of soot burning rate. The DPF sample under test was part of the complete exhaust aftertreatment system (ATS) which consisted of: a diesel oxidation catalyst (DOC), a DPF and a selective catalytic reduction system (SCR). Testing was carried out on a heavy-duty diesel engine installed on a test stand with a dynamic dynamometer and equipped with an emission bench. The test program allowed to assess the engine matching to exhaust aftertreatment system with regard to emissions compliance, in-service operation and necessary engine control unit (ECU) calibration works. The results show the influence of the DPF regeneration strategy on its duration and on the soot mass burn rate. Passive DPF regeneration was a favorable mode of DPF cleaning, due to lack of fuel penalty and lower aging impact on the entire ATS. Optimization of soot flow rate, exhaust gas temperature and the chemistry of the DOC/DPF was further recommended to ensure the long-term durability of the entire system.

Publisher

Polish Scientific Society of Combustion Engines

Subject

General Medicine

Reference15 articles.

1. EUROPEAN AUTOMOBILE MANUFACTURERS ASSOCIATION, ACEA. Medium and heavy trucks over 3.5 t new registrations by fuel type in the European Union. 2020:https://www.acea.auto/files/ACEA_trucks_by_fuel_type_full-year-2020.pdf (accessed on 06.2021).

2. Air quality impact assessment of NOx and PM due to diesel vehicles in Delhi

3. Diesel exhaust exposure enhances the expression of IL-13 in the bronchial epithelium of healthy subjects

4. Diesel particulate emission control

5. Open issues in oxidative catalysis for diesel particulate abatement

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3