Neonatal Aortic Arch Hemodynamics and Perfusion During Cardiopulmonary Bypass

Author:

Pekkan Kerem1,Dur Onur1,Sundareswaran Kartik2,Kanter Kirk3,Fogel Mark4,Yoganathan Ajit5,Ündar Akif6

Affiliation:

1. Department of Biomedical Engineering, Carnegie Mellon University, 2100 Doherty Hall, Pittsburgh, PA 15213-3890

2. Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332-0535

3. Pediatric Cardiothoracic Surgery, Emory University School of Medicine, 1440 Clifton Road, Atlanta, GA 30322

4. Children’s Hospital of Philadelphia, 34th Street, Civic Center Boulevard, Philadelphia, PA 19104

5. Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332-0535A

6. Department of Pediatrics, Surgery and Bioengineering, Penn State College of Medicine, Hershey, PA 17033

Abstract

The objective of this study is to quantify the detailed three-dimensional (3D) pulsatile hemodynamics, mechanical loading, and perfusion characteristics of a patient-specific neonatal aortic arch during cardiopulmonary bypass (CPB). The 3D cardiac magnetic resonance imaging (MRI) reconstruction of a pediatric patient with a normal aortic arch is modified based on clinical literature to represent the neonatal morphology and flow conditions. The anatomical dimensions are verified from several literature sources. The CPB is created virtually in the computer by clamping the ascending aorta and inserting the computer-aided design model of the 10 Fr tapered generic cannula. Pulsatile (130 bpm) 3D blood flow velocities and pressures are computed using the commercial computational fluid dynamics (CFD) software. Second order accurate CFD settings are validated against particle image velocimetry experiments in an earlier study with a complex cardiovascular unsteady benchmark. CFD results in this manuscript are further compared with the in vivo physiological CPB pressure waveforms and demonstrated excellent agreement. Cannula inlet flow waveforms are measured from in vivo PC-MRI and 3 kg piglet neonatal animal model physiological experiments, distributed equally between the head-neck vessels and the descending aorta. Neonatal 3D aortic hemodynamics is also compared with that of the pediatric and fetal aortic stages. Detailed 3D flow fields, blood damage, wall shear stress (WSS), pressure drop, perfusion, and hemodynamic parameters describing the pulsatile energetics are calculated for both the physiological neonatal aorta and for the CPB aorta assembly. The primary flow structure is the high-speed canulla jet flow (∼3.0 m/s at peak flow), which eventually stagnates at the anterior aortic arch wall and low velocity flow in the cross-clamp pouch. These structures contributed to the reduced flow pulsatility (85%), increased WSS (50%), power loss (28%), and blood damage (288%), compared with normal neonatal aortic physiology. These drastic hemodynamic differences and associated intense biophysical loading of the pathological CPB configuration necessitate urgent bioengineering improvements—in hardware design, perfusion flow waveform, and configuration. This study serves to document the baseline condition, while the methodology presented can be utilized in preliminary CPB cannula design and in optimization studies reducing animal experiments. Coupled to a lumped-parameter model the 3D hemodynamic characteristics will aid the surgical decision making process of the perfusion strategies in complex congenital heart surgeries.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3