Wall shear gradient dependent thrombosis studied in blood-on-a-chip with stenotic, branched, and valvular constructions

Author:

Li Yan1ORCID,Li Yongjian1,Li Jiang2ORCID,Chen Haosheng1ORCID

Affiliation:

1. Department of Mechanical Engineering, Tsinghua University 1 , Beijing 100084, China

2. School of Mechanical Engineering, University of Science and Technology Beijing 2 , Beijing 100083, China

Abstract

Thrombosis is the leading cause of death, while the effect of the shear flow on the formation of thrombus in vascular constructions has not been thoroughly understood, and one of the challenges is to observe the origination of thrombus with a controlled flow field. In this work, we use blood-on-a-chip technology to mimic the flow conditions in coronary artery stenosis, neonatal aortic arch, and deep venous valve. The flow field is measured by the microparticle image velocimeter (μPIV). In the experiment, we find that the thrombus often originates at the constructions of stenosis, bifurcation, and the entrance of valve, where the flow stream lines change suddenly, and the maximum wall shear rate gradient appears. Using the blood-on-a-chip technology, the effect of the wall shear rate gradients on the formation of the thrombus has been illustrated, and the blood-on-a-chip is demonstrated to be a perspective tool for further studies on the flow-induced formation of thrombosis.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,General Materials Science,Fluid Flow and Transfer Processes,Colloid and Surface Chemistry,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3