A Theoretical Investigation on the Performance and Combustion Parameters in an Spark Ignition Engine Fueled With Different Shale Gas Mixtures

Author:

Gürbüz Habib1,Köse Şerife2

Affiliation:

1. Department of Automotive Engineering, Faculty of Engineering, Süleyman Demirel University, Isparta 32260, Turkey

2. Graduate School of Natural and Applied Sciences, Süleyman Demirel University, Isparta 32260, Turkey

Abstract

Abstract In this paper, a zero-dimensional (0D) single-zone combustion model was applied for predicting combustion and indicated engine parameters in a spark ignition (SI) engine. Three different shale gas mixtures, methane, and liquefied petroleum gas (LPG) (30% C3H8–70% C4H10), were studied as SI engine fuel. The shale gas compositions included shale gas-1 (86% CH4–14% C2H6), shale gas-2 (81% CH4–10% C2H6–9% N2), and shale gas-3 (58% CH4–20% C2H6–2% C3H8–10% CO2). Experimental results of the SI engine operated with LPG were used in the model verification phase and provided to the validation of the theoretical model. In addition, the operational parameters of the LPG engine were used as the model input values. The results show that shale gas-1 has the potential to be a good alternative fuel to LPG for SI engines. Shale gas-1 has an indicated mean effective pressure (IMEP) value of 5.7–7.3%, which is lower than LPG in the range of ϕ = 0.83–1.2. Furthermore, LPG has a 27.7% higher indicated specific fuel consumption (ISFC) compared to shale gas-1. On the other hand, LPG has 1.2–2.4 units lower indicated thermal efficiency (ITE) values than shale gas-1 in the range of ϕ = 0.83–1.2. However, Methane, Shale gas-2, and Shale gas-3 have 7.55–9.62%, 20.35–20%, 22.19–21.47 lower IMEPs than LPG in the range of ϕ = 0.83–1.2, respectively.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference48 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3