Investigation of Dual-Fuel Combustion by Different Port Injection Fuels (Neat Ethanol and E85) in a DE95 Diesel/Ethanol Blend Fueled Compression Ignition Engine

Author:

Gürbüz Habib1,Demirtürk Selim23

Affiliation:

1. Department of Automotive Engineering, Faculty of Engineering, Süleyman Demirel University, 32260 Isparta, Turkey

2. Graduate School of Natural and Applied Sciences, Süleyman Demirel University, 32260 Isparta, Turkey;

3. Lecturer Technical Sciences Vocational School, Uşak University, 64100 Uşak, Turkey

Abstract

Abstract This paper investigated the effect of different substitution ratios of neat ethanol (E100) and ethanol–gasoline blend E85 on in-cylinder combustion, engine efficiency, and exhaust emissions, in a dual-fuel diesel engine, using the ethanol–diesel blend (DE95). Experimental studies realized at 1400 rpm, 1600 rpm, and 1800 rpm engine speeds under constant engine load of 50% (20 Nm). For each engine speed, the injection timing of diesel and E95 fuels at 24 °CA bTDC kept constant while low-reactivity fuels (i.e., E100 and E85) substitution ratio changed in the range of 59–83%. The results showed that premixed fuels in different SRs have an impact on shaping engine emissions, ignition delay (ID), in-cylinder pressure, and heat-release rate. Also, at the dual-fuel experimental studies in all engine speeds, NOx about 47–67% decrease compared to single fuel conditions of reference diesel and DE95, and smoke opacity remained unchanged around 0.1 FSN, whereas HC and CO increased in the range of 20–50%. However, E85/DE95 and E100/DE95 dual-fuel combustion achieved lower brake thermal efficiency (BTE) and combustion efficiency compared to single diesel fuel combustion. On the other hand, in dual-fuel combustion conditions, despite the low combustion efficiency, premixed E85 fuel offered higher engine efficiency and lower exhaust emissions than E100.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3