Assessment of Scale-Resolved Computational Fluid Dynamics Methods for the Investigation of Lean Burn Spray Flames

Author:

Puggelli Stefano1,Bertini Davide1,Mazzei Lorenzo1,Andreini Antonio1

Affiliation:

1. Department of Industrial Engineering, University of Florence, via Santa Marta 3, Florence 50139, Italy e-mail:

Abstract

Incoming standards on NOx emissions are motivating many aero-engines manufacturers to adopt the lean burn combustion concept. However, several technological issues have to be faced in this transition, among which limited availability of air for cooling purpose and thermoacoustics phenomena. In this scenario, standard numerical design tools are not often capable of characterizing such devices. Thus, considering also the difficulties of experimental investigations in a highly pressurized and reactive environment, unsteady scale-resolved CFD methods are required to correctly understand the combustor performances. In this work, a set of scale-resolved simulations have been carried out on the Deutsches Zentrum für Luft- und Raumfahrt (DLR) generic single-sector combustor spray flame for which measurements both in nonreactive and reactive test conditions are available. Exploiting a two-phase Eulerian–Lagrangian approach combined with a flamelet generated manifold (FGM) combustion model, LES simulations have been performed in order to assess the potential improvements with respect to steady-state solutions. Additional comparisons have also been accomplished with scale-adaptive simulation (SAS) calculations based on eddy dissipation combustion model (EDM). The comparison with experimental results shows that the chosen unsteady strategies lead to a more physical description of reactive processes with respect to Reynolds-averaged Navier–Stokes (RANS) simulations. FGM model showed some limitations in reproducing the partially premixed nature of the flame, whereas SAS–EDM proved to be a robust modeling strategy within an industrial perspective. A new set of spray boundary conditions for liquid injection is also proposed whose reliability is proved through a detailed comparison against experimental data.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3