Effect of Buoyancy on the Melting and Freezing Process

Author:

Boger D. V.1,Westwater J. W.2

Affiliation:

1. Monash University, Clayton, Victoria, Australia

2. University of Illinois, Urbana, Ill.

Abstract

Measurements were made of interfacial velocities and transient and steady-state temperature profiles during the freezing and melting of water in a 0.5 × 0.5 × 2-in. high test chamber. Heat flow was one-dimensional, up and down. Tests both included and excluded the density-inversion temperature of 4 deg C. Freezing at the top and at the bottom, melting at the top, and at the bottom, all were achieved by selection of cold-end temperatures between −50 and −50 deg C and hot-end temperatures between 3 and 97 deg C. Runs included conditions with buoyancy forces in the liquid, with buoyancy forces existing but insufficient to cause convection, and with natural convection occurring at all times. With no natural convection the results agreed with predictions found by use of the numerical technique of Murray and Landis developed originally for cases with no convection. The onset of natural convection was found to be at a Rayleigh number of about 1700. Proper selection of the significant length, the ΔT, and the coefficient of expansion for the Rayleigh number is described. The effective thermal conductivity for Rayleigh numbers up to 107 agreed with prior correlations obtained with free convection but with no phase change. The numerical calculation procedure was modified successfully by use of the effective k. At the highest Rayleigh number, an unusual case of oscillations in the interface velocity is reported.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3