Lattice Boltzmann Simulation of Wormhole Propagation in Carbonate Acidizing

Author:

Ma Xinfang1,Mou Jianye1,Lin Hun1,Jiang Feng2,Liu Kaiyu3,Zhao Xinzhe1

Affiliation:

1. College of Petroleum Engineering, China University of Petroleum, 18th, Fuxue Road, Changping District, Beijing 102249, China e-mail:

2. Anhui Special Equipment Inspection Institute, 45th, Dalian Road, Hefei 230051, Anhui Province, China e-mail:

3. CNPC Great Wall Drilling Company, Panjin 124100, Liaoning Province, China e-mail:

Abstract

In acidizing operations, the acid flows selectively through large pores to create wormholes. Wormhole propagation has been studied by many experts at macroscopic scale. In this paper, the lattice Boltzmann model (LBM), which is a mesoscopic scale method, is adopted to simulate the flow, acid–rock reaction, and rock dissolution in porous media at mesoscopic scale. In this model, a new method based on nonequilibrium extrapolation is proposed to deal with the reactive boundary. On the basis of the model, extensive simulations are conducted on the propagation behavior of wormholes, and the factors influencing wormhole propagation are investigated systematically. The results show that the LBM is a reliable numerical technique to study chemical dissolution in porous media at mesoscopic scale, and that the new method of dealing with the reaction boundary performs well. The breakthrough time decreases with the increase of acid concentration, but acid concentration does not affect the ultimate dissolution pattern. As the reaction rate constant increases, shorter wormholes are created. A higher hydrogen ion diffusion coefficient will result in shorter but wider wormholes. These findings agree well with the previous experimental and theoretical analyses. This study demonstrates the mechanism of wormholing that the unstable growth of pores by the acid rock reaction makes the acid selectively flow through a few large pores which finally form wormholes.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3