Simulating Multizone Fracturing in Vertical Wells

Author:

Wang Wei1,Dahi Taleghani Arash1

Affiliation:

1. Louisiana State University, Crafts and Hawkins, Department of Petroleum Engineering, Baton Rouge, LA 70803

Abstract

Numerous multizone multistage hydraulic fracturing treatments are now being executed in low permeability oil and gas fields around the world. Due to the limited access to the subsurface, post-treatment assessments are mainly limited to few techniques such as tiltmeter, microseismic, and tracer-logs. The first two techniques are mainly used to determine fracture extension; however, fracture height and fracture initiation at all perforation clusters could only be confirmed through radioactive tracer logs or detailed pressure analysis. In this paper, we consider real examples from a field from Central America and investigate potential problems that led to the limited generation of fractures in multizone treatments. For instance, some of the postfrac radioactive logs show very low concentration of tracers at some perforated zones in comparison with other zones. On the other hand in some cases, tracer logs indicate the presence of tracers in deeper or shallower zones. Different reasons could cause fracture growth in nonperforated zones, including but not limited to: perforation design problems, casing/cement integrity problems, lack of containment, instability of fracture growth in one or some of the zones, and finally making a mistake in selecting lithology for fracturing. In this paper, some of these issues have been examined for a few sample wells using treatment pressure data, petrophysical logs, and postfrac tracer logs. Some recommendations in designing the length and arrangement of perforations to avoid these problems in future fracturing jobs are provided at the end of this paper.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference34 articles.

1. Examination of a Cored Hydraulic Fracture in a Deep Gas Well;SPE Prod. Facil.,1993

2. Dahi Taleghani, A., and Olson, J., 2009, “Analysis of Multi-Stranded Hydraulic Fracture Propagation: An Improved Model for the Interaction Between Induced and Natural Fractures,” SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, Oct. 4–7, Paper No. ATCE SPE 124884.

3. How Natural Fractures Could Affect Hydraulic Fracture Geometry;SPE J.,2013

4. Modelling Simultaneous Growth of Multiple Hydraulic Fractures and Their Interaction With Natural Fractures,2009

5. The Relationship Between Fracture Complexity, Reservoir Properties, and Fracture-Treatment Design;SPE Prod. Oper.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3